Internet of Things Security, a State of the

Art

Paul Florence - perso@florencepaul.com
Célia Prat - cprat@etud.insa-toulouse.fr
Benjamin Bigey - bigey@etud.insa-toulouse.fr
Lucien Menassol - menassol@etud.insa-toulouse.fr
Jérome Miarivelo Mampianinazakason - mampiani@etud.insa-toulouse.fr

Abstract—The fast, large-scale deployment of the Inter-
net of Things (IoT) is raising major security concerns.
This document aims at presenting an end-to-end state-
of-the-art of security in this field, by describing the
various security attacks than can be performed on a
generic IoT system.

In this state-of-the-art we link each security exploit
with the IoT functionality it targets. To understand
the specificities of IoT, we first describe the basic
functionnalities found in such systems. In a second
phase, we give an overview of the different types of
security attacks in computer systems. Finally, we detail
which attack can be used to compromise each IoT
functionality and how.

I. INTRODUCTION

The Internet of Things (IoT) can be defined as the remote
interconnection of numerous sensors and objects, through
large-scale communication protocols and with few to no
human intervention. IoT is providing us with a booming
network of smart devices with life-changing applications
in sectors such as health-care, life sciences, smart home,
municipal infrastructure, agriculture, education [1]... How-
ever, the fast and heterogeneous deployment of such
systems raises major security concerns, as smart things
manufacturers in such a booming market are likely to
quickly develop small low-energy devices, at the expense
of allocating the necessary time and processing power to
address security issues.

In the following we will consider that an IoT system is
made of three basic components [1]: a thing, the controller,
and the cloud. The thing is connected to the Internet (it
could be a smart home system, a smart watch. ..) while the
controller is a program on a device such as a mobile phone
or PC. The controller has two ways of communicating
with the thing: either through a unique router if both the
controller and the thing are on the same local network,
or through the cloud if the controller is not on the local
network (see picture below). In this case, the thing builds
a permanent connection to the cloud while the controller
periodically sends or requests information.

In such a system we can consider ten distinct functionalities
(as defined in [1]).

Upgrading | The firmware (either an embedded Linux
system or a micro-controller) allows for code updating.

Y

I ﬁ ;

Controller Thing/device '
Cloud Controller
1. Upgrading || 4. Local 8. Relay 6. Remote

authentication authentication

5. Local control analytics 7. Remote

3. Binding control

10. Sensing and
notification

Figure 1. Basic functionalities of an IoT system [1]

Pairing | Pairing is the act of connecting to the thing
in order to set up the initial configuration. When first
powered on, a smart thing usually behaves as a wireless
router which allows the controller to connect. This can
be done using protocols such as WiFi, Bluetooth, ZigBee,
bar-code/scanner, or NFC.

Binding | The process of configuring the thing’s com-
munications through the controller once pairing is done.
For instance, the process of connecting the thing to the
Internet (by giving it WiFi credentials for example) is
binding. Connecting the thing to other devices such as client
smart-phones or sensors can also be a required binding.

Local authentication | Within a local network, the
controller may be connected to an open port on the
thing which is dedicated to a protocol that requires
authentication: Secure SHell (SSH) or Radio Frequency
IDentification (RFID) for example.

Local control | Once authenticated the controller can
send commands through the local network to control the
thing.

Remote authentication | If the controller is not in the
local network, and has to go through the cloud, it will have
to be authenticated on a remote application server which
will forward commands to the thing.

Remote control | The thing needs to register to a
cloud server in order to allow remote control. The remote
application server can send commands to the thing.

mailto:perso@florencepaul.com
mailto:cprat@etud.insa-toulouse.fr
mailto:bigey@etud.insa-toulouse.fr
mailto:menassol@etud.insa-toulouse.fr
mailto:mampiani@etud.insa-toulouse.fr

Relay | Some application servers and some routers are
needed to relay authentication and control messages be-
tween all components.

Big Data analysis | Big Data analytic capabilities are
deployed on the cloud in order to collect and analyse data
from its users.

Sensing and notification | Smart things getting infor-
mation from the environment (such as temperature) and
notifying the user about those parameters or about some
behaviours like repeated login attempts.

II. COMMON EXPLOITS TYPES

A. Physical Attack

1) Node jamming

Jamming can be viewed as a form of Denial-of-Service
attack, whose goal is to prevent users from receiving
timely and adequate information. The jamming attacks are
mainly classified into active and passive attacks. In active
jamming, the jamming node is continuously generating
some malicious packets. When the victim receives these
packets, a “malicious” code will start running on their
machine. The passive jamming is activated only when
jamming node detects some event on channel, this attack
consists of occupying the communication channel by send-
ing interference at a precise frequency, for example: jam
the 2.4 GHz frequency in a way that drops the signal to a
level where the wireless network can no longer function [2].

2) Sleep Deprivation Attack

A sensor network is composed of nodes interacting with
each other. They are organized in clusters and one of them
is the head of this cluster. The main problem in sensor
network remains their autonomy. Indeed, these nodes have
limited batteries supplies. One of the major challenge in
this field is to reduce the node’s consumption. In order to
save energy, sensors have different modes, including a deep
sleep mode. It is a period of time during which the device
does not communicate with the network, and switches off
the most consuming part of its system (like transceivers for
example). Sensors spend most of their time in deep sleep
mode [3].

The sleep deprivation attack consists in preventing sensors
from entering that mode. How to keep sensors in active
mode is not complicated: sensors just have to receive a
normal message. To make it look real, attackers have
to be a part of the cluster and be the head of it. It is
actually possible because clustering algorithms are based
on reliability: each node is trusted. Algorithms can hence
be easily manipulated.

Once attackers have compromised a node, they just have to
enter the cluster and take the head of it. Malicious cluster
heads pretend sending normal messages while it actually
sends just enough so that the receiving device does not get
to enter their low power sleep mode.

As a result, the target will not get the opportunity to
save energy. Its consumption is going to raise significantly
and hence, its life-time is going to be shortened. Sleep
deprivation can be classified as an active attack [4].

3) Physical Damage

When the device is accessible, the attacker can damage
components of the system [5]. It can lead to the loss of some
features, and sometimes even make the device unavailable,
like in a Denial of Service attack. The attacker can also
plug an external device into the system. He can access it
and do whatever he wants with it.

4) Social Engineering

There is another type of physical attack: when the attacker
contacts and manipulates users who own an IoT system.
What he can typically do is obtaining information to guess
more easily the user’s password for example. The user does
not always give intentionally these indications. However, we
tend to create passwords linked with our lives so that it is
easier to remember, and this can be exploited by attackers.
Attackers can also pretend they are suppliers, and ask for
private information that people wouldn’t usually give, but
they feel confident to give to their suppliers.

Not only passwords are affected. The attackers can also
get sensitive information on the system that can be used
for wrong purposes.

B. Network Attack

1) Traffic Analysis Attacks

Traffic analysis is the process of intercepting and examining
messages in order to deduce information from patterns
in communication. It can be performed even when the
messages are encrypted and cannot be decrypted. It leads
to a “degradation of network performance, it increases
packet collision, increases contention and creates traffic
distortion® [6].

2) Spoofing
Spoofing is a malicious practice in which communication is
sent from an unknown source disguised as a known source
to the receiver. Spoofing can take on many forms: IP, ARP,
DNS, email.

IP Spoofing: The attacker sends packets to the victim
using the address of a trusted machine as source address. He
has to neutralize the trusted machine so that this machine
is unable to send packets to the victim. This can be done
by SYN flooding. Then, the attacker have to guess the
correct sequence number, and try to communicate with the
victim. The only major complication in this attack remain
in the fact that, if it works, the victim will send its answers
to the source address used, so to the trusted machine and
not to the attacker. This is a blind attack [7].

ARP spoofing: The Address Resolution Protocol (ARP)
enables to find the MAC address corresponding to a given

IP address. A partial mapping called the ARP cache, is kept
on every router and machine. The main purpose of ARP
spoofing is to corrupt this ARP cache, by associating the
attacker’s MAC address to the IP address of the machine
he wants to spy on. Hence, by this process, all the packets
destined to the victim will be received by the attacker. But
how to corrupt the cache? This is simple. When a router
gets a packet with IP X, and does not have it in his cache,
ARP broadcasts on the network a request to know the
MAC address of the machine with IP X. Only the machine
who has IP X answer to the router with its MAC address.
This is where attackers can interfere. They send forged
ARP replies to the router indicating they have IP X with
their own MAC address. The router will update his table
with the wrong association.

DNS spoofing: When users want to visit a website, a
Domain Name System (DNS) request is made to convert
the domain name they enter into the IP address of the
website. Attackers can hack DNS servers to modify the
IP address of a domain so that when users think they are
connecting to their bank website for example, they are
connecting to a fake site. So that users believe in it, the
graphical interface has to be similar. Attackers can then
get sensible information.

Email spoofing: It is when the email seems to come from
a legitimate source while it actually is from an impostor.
It makes people more likely to open emails that can be
meant for spreading viruses [7].

3) Man in the Middle

In most cases this attack requires three players at least.
There is the victim, the entity with which the victim
is trying to communicate, and the “Man in the Middle”
(MITM) system, who is intercepting the victim’s communi-
cations. The attacker can access the communication media
between the two end points [8], and optionally modify their
messages.

MITM attacks can occur on different layers of the OSI
Model, from the Data Link layer to the Application
one, and even in cellular networks [8]. It is based on
different approaches depending on the layer: IP spoofing for
example for the network and transport layer, interception
of the encryption keys through the analysis of the network
communications [8].

MITM attacks compromise all three parameters of the CTA
triad: confidentiality in the way that the attacker accesses
the communication, integrity by being able to modify
messages, and availability by having the opportunity to
delete part of the exchange [8].

4) Denial of Service (DoS)

DoS attacks can be carried out by network insiders and
outsiders. Their goal is to make the network unavailable
to authenticate users by flooding and jamming with
likely catastrophic results. By flooding the control channel

with high volumes of artificially generated messages, the
network’s nodes, on-board units and roadside units can-
not sufficiently process the surplus data. Hence, devices
become unavailable. DOS can affect physical layer, link
layer,network layer, transport layer and application layer.

Distributed Denial of Service (DDoS) happens when at-
tackers compromise a lot of vulnerable devices to lead a
synchronized attack on a victim [6].

C. Software Attack

1) Malicious software

These malwares have a behaviour which allows the attacker
to endanger the three points of the CIA triad, he may get
privileges on a system to modify the way it works, to
access, alter or destroy information. There are many types
of malware: a virus is a self-replicating software that infect
a computer by inserting its own code in legitimate software.
A worm is also a self-replicating malicious software but it
does not need host software. A Trojan horse is a malicious
code that hides itself within seemingly harmless programs.
It does not replicate itself but it can collect information or
create back-doors.

2) Code injection

The aim of this attack is to inject a code in a vulnerable
application in order to change the course of its execution.
There are different types of code injection attacks:

e SQL injection: it is used to attack data driven
application thanks to an injection of a SQL statement
in an entry field which allow the attacker to steal,
modify or destroy data.

e Script injection: it consists in injecting malicious
code. One of the most known script injection attack
is Cross Site Scripting (XSS). It allows the attacker
to inject client-side scripts into web pages viewed by
other users. For instance, the script can steal cookies
or redirect the user to another web page.

o Command injection (or shell injection): it allows
an attacker to execute an arbitrary command on the
host operating system via a vulnerable application.

III. ExpLOITS ON IOT FUNCTIONALITIES

Since we are presenting this document as a joined work with
a second team, we will only go through functionnalities 1,
2,4, 5 and 9. You can find the other functionalities detailed
in [9].

A. Upgrading

Applying updates and patches is crucial for connected
things in order to improve security [10], but it is also a
major attack vector. For example, HP LaserJet printers are
vulnerable during the upgrading process, such as described
in [11].

Upgrading attacks are particularly powerful because the
device is in a state that allows the attacker to potentially

upload a modified firmware. They are usually performed
after successfully exploiting an upgrading protocol.

TFTP Man in The Middle | Most devices uses Trivial
File Transfer Protocol (TFTP) to download updated
firmware. This is a protocol that is vulnerable to Man-In-
The-Middle (MITM) attacks, and thus the downloaded
binary can be compromised by an attacker. This was
experimented in [12] where the authors used ARP poisoning
to target a Smart Hub device and modify its firmware.

Bluetooth Man in The Middle | Bluetooth is often used
as a way to deliver updates to the device, through a mobile
phone that behaves as a relay to the Internet. However it
is also possible to perform MITM attacks on the Bluetooth
stack by hijacking the Bluetooth pairing process through
a vulnerability in the secure Secure Simple Pairing (SSP)
protocol when the connection uses Just Work Association
Model [13]. The writers of [14] have described various
MITM attacks on one of the latest version of the protocol’
using vulnerabilities in SSP such as impersonating an user
and purposely choosing a weak security association. The
security properties of SSP Association Models for Bluetooth
and Bluetooth Low Energy (BLE) are formally analysed
by the author of [15] which highlights issues related to the
use of a passkey and a cryptographic public key exchange
in the SSP security model.

The BLE stack is also exposed to quite a few vulnerabilities.
Even if it uses more secure SSP options, it is still sensible
to weak Random Number Generator (RNG) strength [16].
Prior to version 4.2 BLE pairing frames were not encrypted,
which made the Long Term Key (LTK) easily guessable
by an attacker [17]. The authors of [18] have listed some
more Bluetooth exploits involved in MITM attacks. Finally,
the authors of [19] take a look at vulnerabilities from
unsafe software implementations of the protocol which
allow, for instance, an attacker to perform a buffer overflow
of unlimited size on the Linux kernel stack.

WiFi Man in the Middle | It is possible to perform
MITM on the physical layer using properties of WiFi’s
channels [20]. This allows the attacker to inject malicious
packets, and to perform a Key Re-installation Attack
(KRACK) by compromising the 4-way handshake used to
provide reciprocal authentication and session key agreement
on the Wifi Protected Access II (WPA2) protocol. After
the KRACK, the attacker is able to use the session key
to decrypt WPA2 packets. If successful, the attacker can
eavesdrop on all the connection established by the thing,
and inject forged packets. This attack could be used to
compromise a higher level protocol, such as TCP or HTTP
used to carry the upgrading data. It is also possible
to compromise NTP, which in turn compromises TLS
certificates that could have been used to prevent MITM
[21].

1Bluetooth v4.0

Encryption vulnerability | Some IoT suppliers might
use encrypted connection to mitigate the risk of MITM
such as advised in [7]. Nonetheless the secret key is often
extractable by an attacker [12] allowing him to spoof the
supplier identity during the upgrade process.

Secure boot compromising | On Linux systems, man-
ufacturers might set up a Secure Boot to make sure that
they do not run a compromised firmware. Secure Boot
is used to ensure that only trusted code runs on the
device. A chain of trust is created, where the roots are
cryptographic keys programmed on one time fuses. They
are then used to verify the BIOS code, which will then
verify the next link in the chain. However, BIOSes, boot-
loaders and operating systems can still be vulnerable in case
of an unsafe implementation. For example the Universal
Boot Loader (U-Boot) enables cryptographic verification
of signed kernel images. Yet it was vulnerable to a buffer
overflow due to insufficient boundary check during the file
system image load or in the case of a network image boot.
This exploit allowed the attacker to run untrusted code
[22] [23]°.

B. Pairing

An ToT object usually bootstraps in two steps: pairing and
then binding [1]. An external controller like a smart-phone
usually configures these devices when they power on for
the first time and so the pairing process is an immediate
attack vector.

A pairing attack is interesting for an attacker because a
thing is initially likely to easily trust anyone since it is not
yet configured, and never-used objects may be massively
compromised. A common strategy for an attacker is to
force the IoT device to re-pair with a malicious device,
allowing to perform a MITM attack.

Physical access re-pairing | An attacker having physical
access to the device can alter the configuration settings [12],
which could include issuing a new device pairing request.

Bluetooth re-pairing attack | In the case of a Bluetooth
communication, the re-pairing attack is done by spoofing
the MAC address of any of the already paired devices. The
next time the victim tries to communicate, the attacked
thing whose MAC address is not spoofed will be forced to
re-pair with the attacker device [18].

Old Bluetooth versions vulnerabilities | The com-
munications’ security between devices is only as secured
as the oldest Bluetooth version between the connected
things. This forced security downgrade is today a major
vulnerability because many older devices are still being
used and weaknesses from older Bluetooth revisions are
still exploitable [24]. For instance, versions before Bluetooth
1.2 used static unit keys for the pairing process which can

2Common Vulnerability Exposure n°18440
3Common Vulnerability Exposure n°18439

be re-used. An attacker can retrieve the key to eavesdrop
on the original devices.

BLE pairing attacks | IoT devices that use BLE to pair
should calculate the Long Term Keys (LTK) in order to
make sure that any communication happening in the future
between the two pairing devices is secure. However, mobile
applications that work with these devices often do not verify
the MAC address of the real thing and the device performs
a new pairing without requiring any action (“just works”).
The end user only feels a service or product disruption
and the attacker performs a MITM attack when the user
restarts BLE pairing [25].

Z-Wave Downgrade Attack | 2,400 vendors use the
Z-Wave wireless protocol embedded in an estimated 100
million smart-home devices. Today’s Z-Wave systems
are configured to support a strong S2 Z-Wave pairing
security process [25]. Yet a Proof of Concept (PoC) attack
demonstrates how an attacker could select the SO pairing
which is a security breach whither obtaining easily the
network key is a well-known issue [26]. Even in a S2 Z-
Wave pairing, an attacker within RF range is able to steal
the encryption key when a controller pairs with the IoT
device and so compromises it [27].

Network infrastructures weaknesses | The controller
can communicate with the thing through several commu-
nication channels such as WiFi, Bluetooth, ZigBee or bar-
code/scanner. The hardware and network infrastructure
used induce vulnerabilities developed in this paper [28].

C. Local authentication

The authentication process aims at identifying an autho-
rized user or an authorized controller device to allow
control over the system. Identifying an user most often
requires him to input credentials (username/password),
while authenticating a known controller device can be an
automated process using protocols such as Radio Frequency
Identification (RFID) or using its MAC address as an
identifier. This process is considered compromised when
an unauthorized user is able to control the thing, or if
an authorized user is prevented from controlling his thing.
Let us see which security attacks can compromise those
processes when controlling the thing locally.

RFID Spoofing | The RFID technology uses radio fre-
quencies to transmit data through wireless communication.
Each device is attributed a tag, in the form of a microchip,
which provides them with an unique identifier. Tags can
either be passive or active, with the communication always
being initiated by an active tag (reader). Passive tags
are not battery powered but can use the energy from the
request signal to communicate their identifier to the RFID
reader. In the majority of RFID systems, there is no proper
authentication process [10]. This means that tags can be
accessed by anyone, therefore it is possible for an attacker
to spoof the controller’s RFID tag and pretend to be the
authorized device to gain control [10].

MAC Spoofing | When a thing recognizes its controller
device thanks to its MAC address, it is easy to spoof its
identity. The MAC address of any device being public
information available on the local network, an attacker
device can use the controller’s MAC address as its own
and easily gain control over the thing.

SSH/Telnet dictionary attack | Some devices imple-
ment access protocols such as Telnet or SSH. If they
are listening on the default port (respectively 23 and
22) they can be vulnerable to a dictionary attack if
default credentials or unsafe credentials are used [1]. This
connection can be accessed on the local network but also
for a remote connection if the firewall allows it.

Buffer Overflow | Buffer overflow attacks can allow
bypassing the authentication process. For instance, the
Home Network Administration Protocol (HNAP) used in
D-Link networking equipments (including connected home
outlets) has shown to be vulnerable to a buffer overflow
attack allowing to run any command on the exploited device
without going through the authentication step, including
starting up a telnet server to get a root shell [29]. This
exploit uses one of the buffer overflow vulnerabilities of the
widely used libc library.

Bluetooth PIN brute-force | If the device requires a
PIN code to authenticate a user in Bluetooth pairing, it can
be vulnerable to a brute-force attack, given that the PIN
code is relatively short (usually 4 digits are used, meaning
there are almost 10,000 possible combinations) [16] [18].

RFID Denial of Service | It is possible for an attacker to
send noise signals over the radio frequencies used in RFID
communication. Those signals will interfere and therefore
alter the RFID request or response, making the commu-
nication establishment impossible [10]. Indeed, any DoS
attack preventing the thing to operate compromises the
ability of an user to be authenticated (battery exhaustion,
network queries. . .).

D. Local control

Local control implies proximity between the attacker
and the compromised thing. Short range communication
technologies such as Bluetooth, WiFi or ZigBee, represent
significant attack vectors for operating control on the
thing. But while taking local control usually occurs after
compromising the local authentication, some vulnerabilities
relate to a situation where the thing is controlled directly,
without authentication, for example by injecting keystrokes
through unencrypted wireless mouse communication [30].

Physical attack | Sometimes local control on the thing
can be gained through physical interaction with the thing
itself. Attacking the simple electrical or mechanical parts
can often allow to bypass the security provided by the
“smart” aspect of the thing. It can be with something as
simple as a powerful magnet, in this case to bypass a
smart electricity meter cap by forcing the internal relay to

close, even when the electricity provider remotely disabled
electricity delivery [31].

Backdoor planting and access | After compromising
authentication, one of the possible strategies for the
attacker is to plant a backdoor onto the thing to allow
its access and control in the future, even if he loses the
compromised authentication to the thing. There has also
been records of attacker using already present backdoors
installed by a third-party, such as the manufacturers of
smart things for debugging. A large scale automated search
for backdoors in IoT device revealed that between 0.9 and
2.1% of the devices already contains one [32].

Attack self-duplication | Since it is frequent to have
ToT devices of the same type communicating through their
own local network, the attacker will also often try to use
the compromised thing as a new attack vector to extend
the reach of its attack. A group of researchers showed
that with IoT, this attack could take a severe scale by
simulating an attack on smart public lighting through a
Zigbee vulnerability, showing that the propagation would
be total for a city such as Paris [33].

Data stealing and tampering | This attack aims to
steal sensitive data stored in the thing without the user
noticing. BlueBugging for example is an attack over
Bluetooth targeted primarily at smartphones that allows
among others the attacker to steal messages and contact
information, without the owner noticing, or even edit or
delete this data[34]. Things reacting to our behaviour
and habits also offer vectors for private data to leak, like
vulnerabilities in smart lights that react dynamically to an
audio or video feed and can expose it [35].

Covert information channel | Diverting the use of the
thing can allow the creation of a covert channel, to secretly
leak information from a compromised thing. In the case of
smart light-bulbs, it is possible to leak information through
very discreet or unexpected means like infrared emission,
thus in this case bypassing the protection of an air-gapped
system [35].

Voice commands hijacking | Voice-controlled devices
are particularly prone to local control attacks, as the
authentication required for a voice command is often fallible
or inexistent. It is possible to trigger unintended behaviour
from a smart assistant by voice replay attack, or crafting
a digital audio signal that will be inaudible to humans but
will be picked up by the thing and trigger correctly the
voice recognition to execute a malicious command [36].

Critical systems control | While the attacks presented
are already harmful to the thing owner, another problem-
atic raised by the evermore integrated aspect of IoT is
the danger arisen by the control of critical systems such
as smart cars. In this case exploiting the numerous new
communication channels offering possible attack vectors
(car to phone, to road infrastructure, to smart home, to
manufacturer. ..) could have dramatic consequences in an
unsecured context [37].

E. Big data analysis

In the IoT era, some devices are created to store our data
for a personalized service involving data analysis. From
smart watches to smart phones or even smart scales, all
those devices do not have enough processing power to
handle large data. This is why all this data is sent through
Internet to a cloud platform. The machine to machine
communication, which includes traffic generated by IoT
devices, is expected to reach 67 percent of all Internet traffic
[38]. This traffic is due to the transit of users’ data to the
cloud platform data-set. This kind of communication makes
the ToT system vulnerable to basic network and Machine
Learning (ML) threats.

Acquiring data means that all those devices have sensors.
Integrity of the data is a capital challenge [39]. Altering this
data, for example by intercepting it with a MITM, can lead
to a service disruption. For instance, a service that relies
on users’ data-set to provide information upon analysis
can provide false information if the data-set is significantly
compromised. We will illustrate those vulnerabilities by
the example of a connected watch.

After capturing data, it is transferred to the Cloud. This
data feed is transiting through the IoT network, and can be
intercepted. In most networks a routing algorithm decides
the path taken by data.

Wormbhole Attack | When an IoT device wants to send its
collected information to the cloud platform, it tries to find
a path. That means that it attempts to find the next node
to reach based on a factor given by the network, called
a metric. On many networks with Routing Information
Protocol (RIP), the metric is the count of hops to reach a
network. The wormhole attack uses routing algorithm in the
ToT nodes network at its advantage and makes all packets
transiting by the wormhole [40]. When the wormhole node
receives all the data, it can drop it or even alter and send
it to the cloud [40].

Data security breach | As data is sent to the cloud
platform, it is necessary to ensure data confidentiality and
client privacy, through at least encryption [41]. For instance,
a connected watch sends to the cloud its geographic position
and velocity. This information can be anonymous but still
is sensitive data. If an attacker gets this information on
your running habits for example, he knows where you have
been, and how many times.

Denial of Service | Attacking directly the cloud platform
can disrupt the IoT services. Users’ devices store their data
into the cloud, and sometimes are expecting some. For
example, your watch sends your location and velocity to
a cloud platform and gets the distance and time to your
house. If the cloud platform does not answer, the service is
disrupted. The cloud platform can be forced to a Denial of
Service state by several attacks, for instance SQL injection
if it is unsecure enough, buffer overflow, or any threats
that can prevent it from answering [40].

ML mechanics in IoT can be split into three parts:

o The data-set: users provide data to contribute to the
data-set.

e The trainer: the data-set is fed to a trainer, which uses
some ML architectures to build a specific ML model.

e The resulting ML model: it is built to do a specific
task. We can add an API to this ML model to give
at a client the opportunity to make queries and get
some responses back, which is called ML inference.

Model poisoning | By inserting non-reliable data into
the data-set, the attacker can alter the resulting model.
This already happened, when in 2016, Microsoft released
a chatbot on Twitter which was supposed to learn from
interacting with other Twitter users, through ML. After
some days of interactions with up to no good users, the
chatbot started to tweet racist and sexist statements.

Compromised trainer | The analysis uses third-party
libraries to process the data-set into the ML model,
for instance TensorFlow library® available for Python,
JavaScript, C++ or even Java. But if those libraries are
jeopardized, then all results extracted from it cannot be
trusted [42]. Furthermore, this vulnerability can lead to
data-set privacy violation. As the library used by the trainer
can access data, the attacker can also access this knowledge.

User profiling | Client can use the API to make requests
and get information or details from the ML inference. With
all those requests, made intentionally or not, an analyst
attacker can create a profile associated to this user. By
storing those queries, he can track the client interests or
activities [43].

Model evasion | Machine learning classifier is a specific
way of using ML models. For example, we can use it to
split up malicious or benign inputs. As mentioned earlier,
to create a ML model, we use a data-set as a base for
our knowledge. This attack consists of making intelligent
queries on the API, and get some information on the data
used to create our ML model [44].

Model inversion | This attack is close to Model evasion
but is going further on the reward. Let’s take a look at a
recognition device which just answer if an incoming user is
authorized or not. With the same method as model evasion,
making intelligent requests and changing a little our input
to fool our ML model, an attacker can disguise malicious
inputs to a legitimate one [45].

IV. CONCLUSION

We have seen that, if unsafely manufactured, the Internet
of Things can become an open gate to security attacks,

especially considering the amount of sensitive data it carries.

Computer systems can be exploited in many different ways,
and a such a wide remote-operating network is only as
secure as its weakest component. It is primordial that

4https://www.tensorflow.org/

manufacturers are provided with security guidelines and
best practices that will enable them to build up appropriate
security plans for each device available on the market but
also for their cloud services.

REFERENCES

[1] Z. Ling, K. Liu, Y. Xu, C. Gao, Y. Jin, C. Zou, X. Fu,
and W. Zhao, “IoT Security: An End-to-End View and
Case Study,” arXiv:1805.05853 [cs], May 2018.

[2] S. Sowmya and P. D. S. K. Malarchelvi, “A survey of
jamming attack prevention techniques in wireless networks,”
in International Conference on Information Communica-

tion and Embedded Systems (ICICES201/), 2014, pp. 1-4.

[3] M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M.
Kandemir, and R. Brooks, “The Sleep Deprivation Attack
in Sensor Networks: Analysis and Methods of Defense,”
International Journal of Distributed Sensor Networks, vol.
2, no. 3, pp. 267-287, Jul. 2006.

[4] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang,
and A. Chandrakasan, “Physical layer driven protocol
and algorithm design for energy-efficient wireless sensor
networks,” in Proceedings of the 7th annual international
conference on Mobile computing and networking - MobiCom
‘01, 2001, pp. 272-287.

[5] J. Deogirikar and A. Vidhate, “Security attacks in IoT:
A survey,” in 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
2017, pp. 32-37.

[6] D. D. Virmani, A. Soni, S. Chandel, and M. Hemrajani,
“Routing Attacks in Wireless Sensor Networks: A Survey,”
2014.

[7] A. Mosenia and N. K. Jha, “A Comprehensive Study
of Security of Internet-of-Things,” IEEE Transactions on
Emerging Topics in Computing, vol. 5, no. 4, pp. 586602,
Oct. 2017.

[8] M. Conti, N. Dragoni, and V. Lesyk, “A Survey of Man
In The Middle Attacks,” IEEE Communications Surveys
Tutorials, vol. 18, no. 3, pp. 2027-2051, 2016.

[9] E. Soussi, A. Tanem, Y. Anser, L. Rouch, and E. Tissot,
“Safety evaluation of connected objects.” INSA, Feb-2019.

[10] I. Andrea, C. Chrysostomou, and G. Hadjichristofi,
“Internet of Things: Security vulnerabilities and challenges.”
IEE, 2015.

[11] A. Cui, M. Costello, and S. J. Stolfo, “When Firmware
Modifications Attack: A Case Study of Embedded Exploita-
tion,” p. 13, 2013.

[12] M. B. Barcena and C. Wueest, “Insecurity in the
Internet of Things,” Security Response, Symantec, p. 20,
2015.

[13] M. Herfurt and C. Mulliner, “Bluetooth Security
Vulnerabilites and Bluetooth project.” 2005.

https://www.tensorflow.org/

[14] S. Sandhya and K. A. S. Devi, “Contention for Man-in-
the-Middle Attacks in Bluetooth Networks,” in 2012 Fourth
International Conference on Computational Intelligence
and Communication Networks, 2012, pp. 700-703.

[15] M. Patrick and C.-W. P. Raphael, “Analyzing the Se-
cure Simple Pairing in Bluetooth v4.0,” Wireless Personal
Communications, 2012.

[16] P. Stirparo, J. Loeschner, and M. Cattani, “Bluetooth
technology: Security features, vulnerabilities and attacks,”
JRC Scientific and Technical Reports, p. 27, 2011.

[17] Z. Wondimu K., “Exploiting Bluetooth Low Energy
Pairing Vulnerability in Telemedicine,” Morgan State
University, 2015.

[18] S. S. Hassan, S. D. Bibon, M. S. Hossain, and M.
Atiquzzaman, “Security threats in Bluetooth technology,”
Computers € Security, vol. 74, pp. 308-322, May 2018.

[19] S. Ben and V. Gregory, “BlueBorne Technical White
Paper,” BlueBorne, p. 41, 2017.

[20] G. door Mathy, “Advanced WiFi Attacks Using
Commodity Hardware,” Mathy Vanhoef, PhD. Oct-2015.

[21] M. Vanhoef and F. Piessens, “Key Reinstallation
Attacks: Forcing Nonce Reuse in WPA2,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’17, 2017, pp. 1313-1328.

[22] “CVE-2018-18440,” CVE Search. Nov-2018.
[23] “CVE-2018-18439,” CVE Search. Nov-2018.
[

24] A. Lonzetta, P. Cope, J. Campbell, B. Mohd, and
T. Hayajneh, “Security Vulnerabilities in Bluetooth Tech-
nology as Used in IoT,” Journal of Sensor and Actuator
Networks, vol. 7, no. 3, pp. 7-8, Jul. 2018.

[25] Q. GROULARD and Y. SMAL, “Internet of Things
security and privacy,” PhD thesis, Université Catholique
de Louvain, Louvain, 2017.

[26] L. Rouch, J. Francgois, F. Beck, and A. Lahmadi, “A
Universal Controller to Take Over a Z-Wave Network,” pp.
4-5.

[27] B. Fouladi and S. Ghanoun, “Security Evaluation of
the Z-Wave Wireless Protocol,” pp. 3-4.

[28] F. A. Alaba, M. Othman, I. A. T. Hashem, and F.
Alotaibi, “Internet of Things security: A survey,” Journal
of Network and Computer Applications, vol. 88, pp. 1028,
2017.

[29] “Hacking the D-Link DSP-W215 Smart Plug,”
/dev/ttyS0. 2014.

[30] M. Newlin and Bastille Threat Research Team, “Mouse-
jack Whitepaper - Injecting Keystrokes into Wireless Mice,”
2016.

[31] Samuel Demeulemeester, “On a hacké Linky ! Et sans
outils high-tech..” Canard PC Hardware, no. 36, 2018.

[32] John Toterhi, “Hunting for Backdoors in IoT Firmware
at Unprecedented Scale.” 2018.

[33] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or
Weingarten, “IoT Goes Nuclear: Creating a ZigBee Chain
Reaction.”

[34] Nateq Be-Nazir Ibn Minar and Mohammed Tarique,
“Bluetooth Security Threats and Solution: A Survey,”
1JDPS, Jan. 2012.

[35] A. Maiti and M. Jadliwala, “Light Ears: Information
Leakage via Smart Lights,” arXiv:1808.07814 [cs], Aug.
2018.

[36] Y. Gong and C. Poellabauer, “An Overview of Vulner-
abilities of Voice Controlled Systems,” arXiv:1803.09156
[es], Mar. 2018.

[37] Tamés Bécsi, Szildrd Aradi, and Péter Gaspar, “Secu-
rity issues and vulnerabilities in connected car systems,”
2015.

[38] U. Ahsan and A. Bais, “A Review on Big Data Analysis
and Internet of Things,” in 2016 IEEE 13th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS),
2016, pp. 325-330.

[39] N. Haron, J. Jaafar, I. A. Aziz, M. H. Hassan, and M.
I. Shapiai, “Data trustworthiness in Internet of Things: A
taxonomy and future directions,” in Big Data and Analytics
(ICBDA), 2017 IEEE Conference on, 2017, vols. 2018 -,
pp- 25-30.

[40] P. P. Lokulwar and H. R. Deshmukh, “Threat analysis
and attacks modelling in routing towards IoT,” in I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
2017 International Conference on, 2017, pp. 721-726.

[41] M. Abdur, S. Habib, M. Ali, and S. Ullah, “Security
Issues in the Internet of Things (IoT): A Comprehensive
Study,” International Journal of Advanced Computer Sci-
ence and Applications, vol. 8, no. 6, 2017.

[42] C. Song, T. Ristenpart, and V. Shmatikov, “Ma-
chine Learning Models that Remember Too Much,”
arXiv:1709.07886 [cs], Sep. 2017.

[43] E. Malmi and I. Weber, “You Are What Apps You
Use: Demographic Prediction Based on User’s Apps,”
arXiv:1603.00059 [cs], Feb. 2016.

[44] H. Dang, Y. Huang, and E.-C. Chang, “Evading
Classifiers by Morphing in the Dark,” Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’17, pp. 119-133, 2017.

[45] M. Fredrikson, S. Jha, and T. Ristenpart, “Model
Inversion Attacks That Exploit Confidence Information and
Basic Countermeasures,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, 2015, pp. 1322-1333.

	Introduction
	Common exploits types
	Physical Attack
	Node jamming
	Sleep Deprivation Attack
	Physical Damage
	Social Engineering

	Network Attack
	Traffic Analysis Attacks
	Spoofing
	Man in the Middle
	Denial of Service (DoS)

	Software Attack
	Malicious software
	Code injection

	Exploits on IoT functionalities
	Upgrading
	Pairing
	Local authentication
	Local control
	Big data analysis

	Conclusion
	References

